NAPHTHA PETROLEUM, LIGHT, HYDRODESULFURISED
Flammability | 2 | |
Toxicity | 2 | |
Body Contact | 2 | |
Reactivity | 1 | |
Chronic | 3 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Used in dry cleaning, paints, polishes; as general purpose cleaning solvent.
"hydrodesulfurized/ hydrodesulphurized/ hydrodesulphurized naphtha", "hydrotreated light
steam cracked naphtha heartcut, petroleum", "Stoddard solvent", "white spirits",
"hydrocarbon solvent", "mineral spirit", "mineral spirits", "low aromatic white spirit",
"Dry Cleaning Solvent"
HARMFUL - May cause lung damage if swallowed.
Flammable.
Vapors may cause dizziness or suffocation.
Harmful to aquatic organisms, may cause long- term adverse effects in the
aquatic environment.
Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733). Accidental ingestion of the material may be damaging to the health of the individual. Ingestion of petroleum hydrocarbons can irritate the pharynx, esophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions. Damage to the heart muscle can produce heart beat irregularities, ventricular fibrillation (fatal) and ECG changes. The central nervous system can be depressed. Light species can cause a sharp tingling of the tongue and cause loss of sensation there. Aspiration can cause cough, gagging, pneumonia with swelling and bleeding. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
There is some evidence to suggest that this material can causeeye irritation and damage in some persons. Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.
The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives . Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. The material may accentuate any pre-existing dermatitis condition. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Inhalation may produce health damage*. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of high concentrations of gas/vapor causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. If exposure to highly concentrated solvent atmosphere is prolonged this may lead to narcosis, unconsciousness, even coma and possible death. Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Xylene is a central nervous system depressant.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions. Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. Chronic exposure to lighter hydrocarbons can cause nerve damage, peripheral neuropathy, bone marrow dysfunction and psychiatric disorders as well as damage the liver and kidneys. Follicular dermatitis may develop rapidly on repeated immersion of hands and forearms in white spirits. A Belgian report produced in 1958 described subchronic toxicity amongst workers exposed to white spirits (83% paraffins, 17% aromatics) over a 4 month period. These workers complained of nausea and vomiting and one developed aplastic anaemia; bone marrow depression was confirmed. This employee died several months later as a result of septicaemia. Bone marrow depression associated with human exposure might be explained by the presence of myelotoxic compounds, the most notable being benzene.