欢迎来到MSDS查询网--MSDS安全网
当前位置:MSDS安全网 -> 英文MSDS查询 -> VAN SON EASY STREET MSDS报告
免费英文MSDS查询网站--MSDS安全网
VAN SON EASY STREET MSDS报告[下载][中文版]

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

VAN SON EASY STREET

NFPA

Flammability 1
Toxicity 2
Body Contact 0
Reactivity 1
Chronic 2
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4

PRODUCT USE

Press cleaner

SYNONYMS

"Press cleaner"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

  Accidental ingestion of the material may be damaging to the health of the individual.  The toxicity of phthalates is not excessive due to slow oral absorption and metabolism. Absorption is affected by fat in the diet. Repeated doses can cause cumulative toxic effects, and symptoms include an enlarged liver which often reverses if exposure is maintained. Carbohydrate metabolism is disrupted, and cholesterol and triglyceride levels in the blood falls. There can also be withering of the testicles. Some phthalates can increase the effects of antibiotics, thiamine (vitamin B1) and sulfonamides.  

EYE

  Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).  

SKIN

  The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.  Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.  

INHALED

  The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.  Not normally a hazard due to non-volatile nature of product.  

CHRONIC HEALTH EFFECTS

  Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.  There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.  Exposure to phthalates over years leads to pain, numbness and spasms in the hands and feet. Many people have developed multiple disorders in the nervous system and the balancing system. Levels of sex hormones are reduced in women, leading to missed ovulations and miscarriages. They also reduce sperm counts and fertility in men. They mimic certain sex hormones and can damage the fetus. Phthalates are found in paints, inks and glues.  Rosin (colophany) has caused allergic contact dermatitis in solderers using resin flux-  cored solders, can be a sensitiser for strings players, and has caused dermatitis after use in adhesive tapes [NIOSHTEC]. It is found in many products that commonly come in contact with the skin, including cosmetics, sunscreens, veterinary medications, adhesives,  sealants, polishes, paints and oils. Industrial use of rosins (both natural and modified) is common and they are found in such products as printing inks, cutting fluids, corrosion inhibitors and surface coatings. High-quality gloss paper may also be coated with rosin or its derivatives.  The main component of rosin is abietic acid, which by itself is non-sensitising.  Several allergens have been isolated from rosin; these include 15-hydroperoxyabietic acid (15-HPA) and 15-hydroperoxydehydroabietic acid (15-HPDA), a peroxide of dehydroabietic acid. In animal allergic-challenge testing, these two substances are cross-reactive despite differences in molecular weight and unsaturation. Both substances react via a radical mechanism generating structurally similar molecules which give rise to antigens producing the allergic reaction.  Gafvert et al: Arch Dermatol Res 284; 1992; pp 409-413  For a better understanding of the mechanisms of contact allergic reactions, the patterns of cross-reactivity between different resin acid oxidation products were studied.  The 13,14(a)-epoxide and the 13,14(b)-epoxide of abietic acid and 15-HPDA are contact allergens in experimental studies. The b-epoxide of abietic acid has been detected in gum rosins.  Cross reactivity has been observed between the a - and b- epoxides and also between the epoxides and 15-HPA (and also between 15-HPDA and 15-HPA). This can be explained if 15-  HPA forms an epoxide which then reacts with skin protein to generate the complete antigen. Cross-reactivity between the two hydroperoxides might be preceded by the formation of similar alkoxy radicals which further react with skin protein. Cross-  reactivity patterns of resin oxidation products indicate that 15-HPA may react with skin proteins either as a radical or as an epoxide, thus generating different antigens.  Gafvert et al: Chemical Research in Toxicology; 1994; pp 260-266  Esterification of rosin, with polyalcohols for example, reduces allergenic activity although some individuals still are allergic to the polyester. Reduced or diminished reaction to glycerol- and pentaerythritol- esterified rosins, is probably due to the formation of larger molecules (with reduced bioavailability).  Methyl ester of rosins, however, have molecular weights of similar magnitude to the parent rosin and when both are tested in sensitised patients, there is little difference in reactivity.  Shao et al: Contact Dermatitis 28; 1993; pp 229-234  Patch tests conducted using methyl resinate produced a lower level of response than similar tests on the same resin allergic individuals, conducted with glycerol, pentaerythritol and propylene glycol esters of rosin. It was not possible to determine whether those individuals who were methyl resin positive were cross-sensitised or were reacting to a non-specific irritant effect  Private Communication  The main compound formed in glycerol-modified rosins is glyceryl triabietate; lesser amounts of the monoabietate and diabietate are also formed. Whilst the triabietate elicits no or low allergenic activity, the monoabietate has been identified as a contact allergen.  Some individuals react to glycerol-modified rosins: both unmodified abietic acid and the monoabietate have been identified in these modified rosins.  Gafvert et al. Contact Dermatitis; 31 1994; pp 11-17  Rosin modified with fumaric acid or maleic anhydride is often used in paper size. A major product of the paper size in the modification of the rosin is fumaropimaric acid (FPA) which is formed by Diels-Alder addition of fumaric acid to levopimaric acid (l-abietic anhydride), another of the major components of rosin. The allergenic activity of isomers of FPA, tested in guinea pigs is low but maybe present. After prolonged heating, however, FPA is converted to maleopimaric acid (MPA). MPA has been shown to be a potent allergen in previous studies. MPA also forms when abietic acid and fumaric acid are heated together at 220 deg. C and is present in commercially available fumaric acid-  modified rosins. Free abietic acid has also been detected in these modified rosins.  Fumaric acid-modified rosins were shown to elicit positive test results in guinea pigs sensitised to MPA.  Gafvert et al: Nordic Pulp and Paper Research Journal 10: 1995; 139-144.  
【温馨提示】 MSDS安全网为了能让广大网友得到更好的服务,杜绝不法人员盗用本站共享资源,最终决定隐藏部分核心资源内容,只供注册会员查看; 本站会员采用微信账号登录/免费注册机制,登录成功后即可免费查看和下载本站所有资源!谢谢支持! 微信账号登录 注意:微信账号登录成功后,若页面没有刷新,请按F5刷新本页面!
在线下载 VAN SON EASY STREET MSDS报告