WIA AUSTROD R4
Flammability | 0 | |
Toxicity | 2 | |
Body Contact | 2 | |
Reactivity | 0 | |
Chronic | 2 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Consumable filler rod for gas tungsten arc- welding of carbon and special alloy steels.
"Product number OR4CC16", OR4CC24, "Welding Industries", "gas tungsten arc-welding rod",
"filler rod", "GTAW-TIG rod", "TIG welding", W.I.A.
Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre- existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments.
Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn). Fumes from welding/brazing operations may be irritating to the eyes.
The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Skin contact does not normally present a hazard, though it is always possible that occasionally individuals may be found who react to substances usually regarded as inert.
Inhalation may produce health damage*. The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of the material, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Fumes evolved during welding operations may be irritating to the upper-respiratory tract and may be harmful if inhaled. Manganese fume is toxic and produces nervous system effects characterized by tiredness. Acute poisoning is rare although acute inflammation of the lungs may occur. A chemical pneumonia may also result from frequent exposure. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalized feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Harmful levels of ozone may be found when working in confined spaces. Symptoms of exposure include irritation of the upper membranes of the respiratory tract and lungs as well as pulmonary (lung) changes including irritation, accumulation of fluid (congestion and edema) and in some cases hemorrhage. Exposure may aggravate any pre-existing lung condition such as bronchitis, asthma or emphysema. Effects on lungs are significantly enhanced in the presence of respirableparticles.
Principal routes of exposure include accidental contact with the molten metal and inhalation of fume arising as a consequence of the action of the flame on the rod / wire. Although fume generation rates are generally low, excessive heating of the material, well above its quoted melting point, may result in over-exposure. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders. severe disorders of the nervous system, has been reported in welders working on Mn steels in confined spaces. Ozone is suspected to produce lung cancer in laboratory animals; no reports of this effect have been documented in exposed human populations. Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shockThe welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported.