WIA ROLLER ARC
Flammability | 0 | |
Toxicity | 1 | |
Body Contact | 3 | |
Reactivity | 0 | |
Chronic | 2 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Consumable, shielded, tubular hard facing wire depositing a wear resistant alloy
containing chrome carbides. Metal can be laid down self shielded or gas shielded. Prime
use for resurfacing sugar roll mills often carried out in situ during cane crushing. Note:
If arc/plume is gas shielded ozone and nitrogen oxides may be produced.
W.I.A., "Welding Industries", FCAW, "welding electrode", "hard-surfacing and rebuilding
wire", "self-shielded chrome-carbide hard-facing wire", "AS/ANS 2576 / 2145-B7, alloy",
"gas shielded hard facing wire", "formerly Hardcore 2145"
Causes burns.
Risk of serious damage to eyes.
The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments.
The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. Fumes from welding/brazing operations may be irritating to the eyes.
The material can produce chemical burns following direct contactwith the skin. Chrome fume, as the chrome VI oxide, is corrosive to the skin and may aggravate pre- existing skin conditions such as dermatitis and eczema. As a potential skin sensitizer, the fume may cause dermatoses to appear suddenly and without warning. Absorption of chrome VI compounds through the skin can cause systemic poisoning effecting the kidneys and liver.
If inhaled, this material can irritate the throat andlungs of some persons. Chrome fume is irritating to the respiratory tract and lungs. Toxic effects result from over-exposure. Asthmatic conditions may result as a consequence of the sensitising action of chrome VI compounds. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.
Principal route of exposure is inhalation of welding fumes from electrodes and workpiece. Reaction products arising from electrode core and flux appear as welding fume depending on welding conditions, relative volatilities of metal oxides and any coatings on the workpiece. Studies of lung cancer among welders indicate that they may experience a 30- 40% increased risk compared to the general population. Since smoking and exposure to other cancer-causing agents, such as asbestos fibre, may influence these results, it is not clear whether welding, in fact, represents a significant lung cancer risk. Whilst mild steel welding represents little risk, the stainless steel welder, exposed to chromium and nickel fume, may be at risk and it is this factor which may account for the overall increase in lung cancer incidence among welders. Cold isolated electrodes are relatively harmless. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders. Exposure to fume containing high concentrations of water-soluble chromium (VI) during the welding of stainless steels in confined spaces has been reported to result in chronic chrome intoxication, dermatitis and asthma. Certain insoluble chromium (VI) compounds have been named as carcinogens (by the ACGIH) in other work environments. Chromium may also appear in welding fumes as Cr2O3 or double oxides with iron. These chromium (III) compounds are generally biologically inert. Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shockThe welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported.