WIA WELDWELL RS309LC
Flammability | 0 | |
Toxicity | 2 | |
Body Contact | 2 | |
Reactivity | 0 | |
Chronic | 2 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Consumable, all position (except vertical down), low carbon, rutile flux coated electrode
for Type 309 stainless steel. Suitable for welding stainless steels of similar composition
and also for dissimilar metal welding eg. stainless steels to mild and low alloy steels.
Slag control and slag release excellent with low spatter levels.
PH309LC25, PH309LC32, PH309LC40, PH309LC50, W.I.A., "covered electrode", "MMAW electrode",
"rutile type low carbon 24Cr/12Ni stainless steel electrode"
May cause SENSITIZATION by skin contact.
Limited evidence of a carcinogenic effect.
Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre- existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments.
Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn). Fumes from welding/brazing operations may be irritating to the eyes.
The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Chrome fume, as the chrome VI oxide, is corrosive to the skin and may aggravate pre- existing skin conditions such as dermatitis and eczema. As a potential skin sensitizer, the fume may cause dermatoses to appear suddenly and without warning. Absorption of chrome VI compounds through the skin can cause systemic poisoning effecting the kidneys and liver. Nickel dusts, fumes and salts are potent contact allergens and sensitizers producing a dermatitis known as "nickel" rash. In the absence of properly designed ventilation systems or where respiratory protective devises are inadequate, up to 10% of exposed workers are expected to be symptomatic.
The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Chrome fume is irritating to the respiratory tract and lungs. Toxic effects result from over-exposure. Asthmatic conditions may result as a consequence of the sensitising action of chrome VI compounds. Regular exposure to nickel fume, as the oxide, may result in "metal fume fever" a sometimes debilitating upper respiratory tract condition resembling influenza. Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in closed or poorly ventilated areas. Pulmonary edema, pulmonary fibrosis and asthma has been reported in welders using nickel alloys; level of exposure are generally not available and case reports are often confounded by mixed exposures to other agents. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalized feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Fluoride vapors and thermally produced particulates (fume) of the calcium, sodium and potassium salts are potent mucous membrane irritants. Acute effects of fluoride inhalation include irritation of nose and throat, coughing and chest discomfort. A single acute over-exposure may even cause nose bleed. Pre-existing respiratory conditions such as emphysema, bronchitis may be aggravated by exposure. Occupational asthma may result from exposure. Harmful levels of ozone may be found when working in confined spaces. Symptoms of exposure include irritation of the upper membranes of the respiratory tract and lungs as well as pulmonary (lung) changes including irritation, accumulation of fluid (congestion and edema) and in some cases hemorrhage. Exposure may aggravate any pre-existing lung condition such as bronchitis, asthma or emphysema.
There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.
Principal route of exposure is inhalation of welding fumes from electrodes and workpiece. Reaction products arising from electrode core and flux appear as welding fume depending on welding conditions, relative volatilities of metal oxides and any coatings on the workpiece. Studies of lung cancer among welders indicate that they may experience a 30- 40% increased risk compared to the general population. Since smoking and exposure to other cancer-causing agents, such as asbestos fibre, may influence these results, it is not clear whether welding, in fact, represents a significant lung cancer risk. Whilst mild steel welding represents little risk, the stainless steel welder, exposed to chromium and nickel fume, may be at risk and it is this factor which may account for the overall increase in lung cancer incidence among welders. Cold isolated electrodes are relatively harmless. Exposure to fume containing high concentrations of water-soluble chromium (VI) during the welding of stainless steels in confined spaces has been reported to result in chronic chrome intoxication, dermatitis and asthma. Certain insoluble chromium (VI) compounds have been named as carcinogens (by the ACGIH) in other work environments. Chromium may also appear in welding fumes as Cr2O3 or double oxides with iron. These chromium (III) compounds are generally biologically inert. Extended exposure to inorganic fluorides causes fluorosis, which includes signs of joint pain and stiffness, tooth discoloration, nausea and vomiting, loss of appetite, diarrhea or constipation, weight loss, anemia, weakness and general unwellness. There may also be frequent urination and thirst. Redness, itchiness and allergy-like inflammation of the skin and mouth cavity can occur. The central nervous system may be involved. WARNING: Nickel is classified by IARC as Group 1 - CARCINOGENIC TO HUMANS. There is little information on the effects on welders of fume containing nickel. Ozone is suspected to produce lung cancer in laboratory animals; no reports of this effect have been documented in exposed human populations. Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shockThe welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported.