QUEST PD 3235A VERDA
Flammability | 1 | |
Toxicity | 2 | |
Body Contact | 2 | |
Reactivity | 1 | |
Chronic | 2 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Perfume compound
May cause SENSITIZATION by inhalation and skin contact.
HARMFUL - May cause lung damage if swallowed.
Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733). The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern. Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. Digestive symptoms may include nausea, vomiting and diarrhea. Aspiration is much more dangerous than ingestion because lung damage can occur and the substance is absorbed into the body. Alcohols with ring structures and secondary and tertiary alcohols cause more severe symptoms, as do heavier alcohols. Exposure to aldehydes causes neurological symptoms such as headache, drowsiness, dizziness, seizures, depression and coma. Cardiovascular involvement may result in increased heart rate, collapse and low blood pressure; respiratory effects include throat spasms, irritation, difficulty swallowing, pulmonary edema and an asthma-like condition. Gastrointestinal signs include nausea, blood in vomit, diarrhea, ulcers and abdominal pain. Massive exposures may damage the kidney and liver.
Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).
The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population. Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest- tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes. Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water.