QUEST SG1560
Flammability | 1 | |
Toxicity | 0 | |
Body Contact | 0 | |
Reactivity | 1 | |
Chronic | 2 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Fragrance compound
"fragrance perfume odourant odorant"
May cause SENSITIZATION by inhalation and skin contact.
Toxic to aquatic organisms, may cause long- term adverse effects in the aquatic
environment.
The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.
Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).
The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population. Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest- tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes. Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Chronic exposure to salicylates produce problems with metabolism, central system disturbances, or kidney damage. Those with pre-existing damage to the eye, skin or kidney are especially at risk. Hypersensitive reactions can occur, especially in people with asthma. These symptoms include itchy wheals and other skin eruptions, an inflamed nose, shortness of breath and serious narrowing of the airways (which can even cause death). Chronic exposure to parabens by skin contact, ingestion or injection can cause hypersensitive reactions. There may be cross-sensitivity between different species, so people can be develop allergic symptoms if they were sensitized by other chemicals. Symptoms include acute narrowing of the airways, hives (itchy wheal), swelling, running nose and blurred vision. There may be anaphylactic shock and rash. Certain substances, commonly found in perfumes or perfumed products, produce hypersensitivity. Sensitising constituents have been classified as Class A (common sensitisers) or Class B (rare sensitisers) in a Japanese study (Nakayama 1998). Contact allergy to perfumes occurs with a relatively high incidence, such incidence only surpassed by nickel allergy in the community. In a Danish study, it was found that about 1.1% of the population was allergic to Peru balsam or "fragrance mix". There is no cure for perfume allergy. Once sensitised, exposure to even minute amounts of the perfume, gives rise to eruptions and eczema. These symptoms may be treated with steroid creams, although frequent recourse to this treatment produces unwanted side- effects.