VWR MOLECULAR SIEVE 0.4NM PELLETS, 1.6MM (1/16")
Flammability | 0 | |
Toxicity | 0 | |
Body Contact | 0 | |
Reactivity | 0 | |
Chronic | 2 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Drying agent
The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.
Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn). Dehydrated zeolites may cause thermal burns with corneal damage.
The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Dehydrated zeolites generate heat in contact with moisture and may produce thermal burns. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Intratracheal instillation of one species of zeolite, mordenite, in rats produced a mild fibrosis and hyperplasia. No significant pulmonary inflammation or interstitial fibrosis was seen in inhalation studies.
All workers involved in the production and use of zeolite-containing products are potentially exposed to erionite, a fibrous form of zeolite, which is mined with deposits of other zeolites. When administered by inhalation erionite induced pleural mesotheliomas in rats of both sexes. When administered by intraperitoneal injection, erionite induced peritoneal mesotheliomas in male mice. When introduced by intrapleural injection erionite induced pleural mesotheliomas in male and female rats. Descriptive studies have demonstrated a very high mortality from malignant mesotheliomas, mainly of the pleura, in three Turkish villages where there has been contamination from erionite and where the population had been exposed from birth. Erionite fibres were identified in lung tissue samples in cases of pleural mesotheliomas; ferruginous bodies were found in a much higher proportion of inhabitants in contaminated villages than those of control villages. Intratracheal instillation of another species of zeolite, mordenite, in rats, produced a mild fibrosis and hyperplasia. No significant pulmonary inflammation or interstitial fibrosis was seen in inhalation studies. Mordenite exhibits low cytotoxicity, in vitro. A sample of natural zeolite particles induced aberrant metaphase in human whole blood cultures in vitro. This zeolite sample also induced aberrant metaphases in cells collected by peritoneal lavage of mice after intraperitoneal injection.