WATTYL HEAT PROOF BASE YELLOW
Flammability | 3 | |
Toxicity | 2 | |
Body Contact | 2 | |
Reactivity | 1 | |
Chronic | 3 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Used according to manufacturer' s directions. The use of a quantity of material in an
unventilated or confined space may result in increased exposure and an irritating
atmosphere developing.Before starting consider control of exposure by mechanical
ventilation.
Harmful by inhalation.
HARMFUL - May cause lung damage if swallowed.
Irritating to eyes, respiratory system and skin.
Highly flammable.
Vapors may cause dizziness or suffocation.
Toxic to aquatic organisms, may cause long- term adverse effects in the aquatic
environment.
Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733). Accidental ingestion of the material may be damaging to the health of the individual. Ingestion of petroleum hydrocarbons can irritate the pharynx, esophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions. Damage to the heart muscle can produce heart beat irregularities, ventricular fibrillation (fatal) and ECG changes. The central nervous system can be depressed. Light species can cause a sharp tingling of the tongue and cause loss of sensation there. Aspiration can cause cough, gagging, pneumonia with swelling and bleeding.
This material can cause eye irritation and damage in some persons. Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.
This material can cause inflammation of the skin oncontact in some persons. The material may accentuate any pre-existing dermatitis condition. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin but branched species are more likely to.
Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation hazard is increased at higher temperatures. Inhalation of high concentrations of gas/vapor causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. If exposure to highly concentrated solvent atmosphere is prolonged this may lead to narcosis, unconsciousness, even coma and possible death. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing.Before starting consider control of exposure by mechanical ventilation.
There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]. Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions. Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.