KODAK POLYCHROME DITP/THML 830 POSITIVE DEVELOPER
Flammability | 0 | |
Toxicity | 2 | |
Body Contact | 3 | |
Reactivity | 0 | |
Chronic | 2 | |
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 |
Industrial applications. Graphic arts product.
Causes burns.
Risk of serious damage to eyes.
The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Accidental ingestion of the material may be damaging to the health of the individual. Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the esophagus and stomach may experience burning pain; vomiting and diarrhea may follow. Epiglottal swelling may result in respiratory distress and asphyxia; shock can occur. Narrowing of the esophagus, stomach or stomach valve may occur immediately or after a long delay (weeks to years). Severe exposure can perforate the esophagus or stomach leading to infections of the chest or abdominal cavity, with low chest pain, abdominal stiffness and fever. All of the above can cause death.
The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. Direct eye contact with corrosive bases can cause pain and burns. There may be swelling, epithelium destruction, clouding of the cornea and inflammation of the iris. Mild cases often resolve; severe cases can be prolonged with complications such as persistent swelling, scarring, permanent cloudiness, bulging of the eye, cataracts, eyelids glued to the eyeball and blindness. Alkaline salts may be intensely irritating to the eyes and precautions should be taken to ensure direct eye contact is avoided.
The material can produce chemical burns following direct contactwith the skin. Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Not normally a hazard due to non-volatile nature of product. Inhaling corrosive bases may irritate the respiratory tract. Symptoms include cough, choking, pain and damage to the mucous membrane. In severe cases, lung swelling may develop, sometimes after a delay of hours to days. There may be low blood pressure, a weak and rapid pulse, and crackling sounds.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Glyceryl triesters (triglycerides), following ingestion, are metabolised to monoglycerides, free fatty acids and glycerol, all of which are absorbed in the intestinal mucosa and undergo further metabolism. Little or no acute, subchronic or chronic oral toxicity was seen in animal studies unless levels approached a significant percentage of calorific intake. Subcutaneous injections of tricaprylin in rats over a five-week period caused granulomatous reaction characterised by oil deposits surrounded by macrophages. Diets containing substantial levels of tributyrin produced gastric lesions in rats fed for 3-35 weeks; the irritative effect of the substance was thought to be the cause of tissue damage. Dermal application was not associated with significant irritation in rabbit skin; ocular exposures were, at most, mildly irritating to rabbit eyes. No evidence of sensitisation or photosensitisation was seen in a guinea pig maximisation test. Most of the genotoxicity test systems were negative. Tricaprylin, trioctanoin and triolein have been used, historically, as vehicles in carcinogenicity testing of other chemicals. In one study, subcutaneous injection of tricaprylin, in newborn mice, produced more tumours in lymphoid tissue than were seen in untreated animals whereas, in another study, subcutaneous or intraperitoneal injection in 4- to 6-week old female mice produced no tumours. Trioctanoin injected subcutaneously in hamster produced no tumours; when injected intraperitoneally in pregnant rats there was an increase in mammary tumours among the off-spring but similar studies in pregnant hamsters and rabbits showed no tumours in the off-spring. The National Toxicological Program conducted a 2-year study in rats given tricaprylin by gavage. The treatment was associated with a statistically significant dose-related increase in pancreatic acinar cell hyperplasia and adenoma but there were no acinar carcinomas. Tricaprylin is not teratogenic to mice or rats but some reproductive effects were seen in rabbits. A low level of foetal eye abnormalities and a small percentage of abnormal sperm were reported in mice injected with trioctanoin.